Nagata Compactification for Algebraic Spaces

نویسندگان

  • BRIAN CONRAD
  • Masayoshi Nagata
چکیده

We prove the Nagata compactification theorem for any separated map of finite type between quasi-compact and quasi-separated algebraic spaces, generalizing earlier results of Raoult. Along the way we also prove (and use) absolute noetherian approximation for such algebraic spaces, generalizing earlier results in the case of schemes. To the memory of Masayoshi Nagata

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding measure spaces

‎For a given measure space $(X,{mathscr B},mu)$ we construct all measure spaces $(Y,{mathscr C},lambda)$ in which $(X,{mathscr B},mu)$ is embeddable‎. ‎The construction is modeled on the ultrafilter construction of the Stone--v{C}ech compactification of a completely regular topological space‎. ‎Under certain conditions the construction simplifies‎. ‎Examples are given when this simplification o...

متن کامل

On some causal and conformal groups

We determine the causal transformations of a class of causal symmetric spaces (Th. 2.4.1). As a basic tool we use causal imbeddings of these spaces as open orbits in the conformal compactification of Euclidean Jordan algebras. In the first chapter we give elementary constructions of such imbeddings for the classical matrix-algebras. In the second chapter we generalize these constructions for ar...

متن کامل

Twistor Lines on Nagata Threefold

We present an explicit description of twistor lines in M. Nagata’s example of nonprojective complete algebraic variety and give a direct proof of the fact that Nagata’s example is a compactification of the twistor space of a hyperKähler metric on the cotangent bundle of P . We particularly observe that there exists a pair of 4-dimensional families of real lines and that precisely one of these f...

متن کامل

Algebraic and tropical curves: comparing their moduli spaces

We construct the moduli space for equivalence classes of n-pointed tropical curves of genus g, together with its bordification given by weighted tropical curves, and its compactification by extended (weighted) tropical curves. We compare it to the moduli spaces of smooth and stable, n-pointed algebraic curves, from the combinatorial, the topological, and the Teichmüller point of view.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009